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Abstract. The electronic states of stressed heterojunctions formed from narrow-gap
semiconductors with mutually inverted bands and showing antiferromagnetic ordering have been
studied. Interface states have been shown to appear in these heterojunctions and they are spin
split. If the Fermi level lies in one of the interface bands, this leads to magnetic ordering in the
interface plane. An interface magnetization effect is expected to occur. Using representative
estimates of the model parameters, the value of the relative interface magnetization has been
obtained.

1. Introduction

Recently, there has been considerable interest in the study of Tamm-type interface states
which arise in some semiconductor structures. These interface states (in contrast to the
ones traditionally considered) are not governed by the transition region structure, being
generated from the bulk energy bands of the constituents. At first, Tamm’s interface states
were considered theoretically [1–3] in so-called inverted contacts (that is, in semiconductor
heterojunctions based on semiconductors with mutually inverted bands), so the gaps of
the constituents had opposite signs. It was shown in [4, 5] that such interface states
could in fact appear not only at the heterojunction boundary but almost at the positions
of other inhomogeneities of the electron system, such as an antiferromagnetic ordering
vector inhomogeneity (realized as an antiferromagnetic domain wall) or a polarization
vector inhomogeneity (realized as a ferroelectric domain wall), combinations of these
inhomogeneous fields producing a variety of systems with disturbed symmetrical properties.
This is an important point, providing a means for separating off the interface states under
consideration into one particular group.

As an example of inverted contacts, heterojunctions based on certain narrow-gap IV–
VI or II–VI semiconductors were previously considered. In such cases, in a treatment
based on the simplest two-band approximation, the interface states have a gapless band
spectrum, linear in the interface plane, their energy falling in the gap of the constituent
semiconductors. Subsequent investigations [3, 6] showed that such interface states can also
exist in heterojunctions with normal band arrangements. However, in contrast to the case for
the inverted heterojunction, these states appear either inside the conduction bands or inside
the valence bands of the constituents, the energy spectrum being cut off at finite transverse
(along the interface plane) momentum. Later it was shown that there are interface states
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in superlattices [7, 8], quantum wells [9], and quantum dots [10]. It is worth noting that
quite recently, in [11], the magnetic field dependences of the Hall coefficients of PbTe/SnTe
superlattices have been interpreted by assuming that in addition to the electrons in PbTe and
holes in SnTe a third kind of charge carrier connected with the above-mentioned interface
states appears. A more direct investigation of the two-dimensional interface states was
performed by means of magneto-tunnelling spectroscopy of the p-HgCdTe quantum well,
and is described in [12].

The majority of semiconductor structures are stressed due to the lattice mismatch of
their constituents. The electron energy spectrum of a stressed semiconductor structure is
determined by the strains in addition to the widths of the layers and the physical parameters
of the constituents. A more direct strain effect is the change of the energy spectrum, which is
different for each constituent, and depends upon the acoustic deformation potentials of both
the conduction and the valence bands. This problem has been thoroughly investigated for
different semiconductor structures [13]. Moreover, in stressed semiconductor structures the
elastic strains or their gradients due to piezoelectric or flexometric effects can lead to static
polarization fields [14]. These fields are determined by the strain values, elastic constants,
piezoelectric coefficients and other material parameters, which are plainly different in each
of the alternating layers. In fact, the polarization is conditioned by the mutual shifts of the
cation and anion sublattices of a binary (or multinary) semiconductor. Proceeding from the
fact that each of these sublattices in turn generates energy states of either conduction or
valence bands, in our earlier work [6] we investigated the strain-induced polarization effect
on the boundary interface state of the semiconductor heterojunction. It has been shown [6]
that the normal deformation effect on the interface-state energy spectrum is quite trivial and
leads to homogeneous shifts of the energy bands.

Upon doping with transition or rare-earth elements, IV–VI and II–VI semiconductors
turn into dilute magnetic ones, and at low temperature they might become ferromagnetic or
antiferromagnetic. Earlier, quantum structures based on such semimagnetic semiconductors
were intensively investigated because of their interesting physical properties [15–17], their
non-trivial (as compared with those of bulk materials) magnetic properties being emphasized
[18–20]. Moreover, it has been recognized [21] that interfaces play a key role in the
magnetic properties of heterostructures based on semimagnetic semiconductors. The origin
of the effects was previously thought to be connected with the structure of the interface
plane, its imperfection and the disposition of the magnetic impurities across the interface. In
this paper, another model of the interface magnetization effect, based on magnetic properties
of the interface states, will be developed.

A crucial feature of the problems concerning the interface states is that for
inverted stressed semiconductor structures with antiferromagnetic ordering we have a
situation in which all three of the above-mentioned fields (composition, polarization and
antiferromagnetic) are applied to the system. Such stressed semiconductor heterocontacts
with antiferromagnetic ordering are quantum structures, with a breakdown of the
fundamental symmetries of time and space inversion. The breakdown of theT -invariance is
a result of the antiferromagnetic ordering, while the space inversion asymmetry is a general
property of any heterostructure. In our case of a stressed heterocontact, an additional
space asymmetry arises due to the strain-induced polarization. It is well known that time
inversion symmetry provides the Kramers degeneracy, while space inversion symmetry
gives a twofold degeneracy which is referred to as the spin degeneracy. For the structures
in question, both types of degeneracy are absent. Therefore, such heterostructures must
be systems with unusual microscopic electronic properties. One of them is the interface
magnetization effect considered in this paper.
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Thus, the aim of this work is to study the interface states in stressed inverted contacts
based on semimagnetic narrow-gap semiconductors with antiferromagnetic ordering. It is
worth noting that a similar situation might be found in a so-called ‘system with electron–
hole pairing’. After putting commensurate waves of spin and charge density on the system,
the energy spectrum of the latter turns out to be spin splitting. Under limited doping this
leads to electron spin ordering (that is, we have a system with exciton ferromagnetism)
[22]. Now, taking into account the fact that the spin- and charge-density waves might
be induced by antiferromagnetic ordering and by structural lattice distortions (which are
accompanied by polarization), respectively, one can affirm that a system with polarization
and antiferromagnetic ordering will be similar to one with exciton ferromagnetism.

To completely specify our calculations, heterojunctions based on semimagnetic narrow-
gap IV–VI semiconductors will be studied. Since Tamm’s interface states are generated from
the bulk states of the constituent semiconductors, initially in section 2 we develop a spectrum
model of the bulk stressed narrow-gap IV–VI semiconductors with antiferromagnetic
ordering. The effective Dirac Hamiltonian will be used as a model. In section 3 the interface
states of the inverted stressed contact with antiferromagnetic ordering will be considered,
two cases being studied. One of them is the case in which the antiferromagnetic ordering
is the same in the initial semiconductors, and the other is one in which it has opposite signs
in the constituents. A spin analysis of the interface states is given in section 4. This is
followed by a brief summary.

2. The model Hamiltonian

Each of the materials making up the heterojunctions of the narrow-gap IV–VI
semiconductors under study is known to have a direct gap at the L points of the Brillouin
zone, there being two doubly degenerate bands, L+ and L−, with opposite coordinate
symmetry near the middle of the gap. Thus the simplest model of the narrow-gap IV–
VI semiconductor spectrum is the two-band one [23, 24]. In the case of mirror symmetry
bands, the energy spectrum of the semiconductor heterojunction, with the trigonal [111]
crystal axis picked as thez-axis, might be described by the effective Dirac Hamiltonian

Ĥ00 =
(

1 σ · p̂
σ · p̂ −1

)
(1)

where the upper and lower blocks are related to the statesϕ andχ of the conduction and
valence bands, respectively,σ = (σx, σy, σz) is the vector whose components are the Pauli
matrices,p̂ = −i h̄(v⊥∇x, v⊥∇y, v‖∇z), v⊥,‖ being interband coupling matrix elements
having the dimensions of velocity, and1 = Eg/2, whereEg is the energy gap, depending
on the z-coordinate, if the heterojunction in question is aligned in thez-direction. Note
that this Dirac form of the Hamiltonian (1) is just the first approximation of thek · p̂
perturbation theory in which only matrix elements connecting near-band states are retained.
In the next approximation, the effects of more distant bands are treated in second-order
perturbation theory, leading tok2-terms in the Hamiltonian. In this work we neglect the
far-band corrections, keeping in mind that this is a first approximation of the perturbation
theory. The justification of this assumption will be discussed in some detail below.

As was emphasized in the introduction, in stressed semiconductor heterojunctions the
polarization effect is induced by the strain. As it is governed by mutual shifts of the cation
and anion sublattices of the initial semiconductors, in our model Hamiltonian this effect can
be described by the following term [25]:

Vst = u · ∇r(VA(r)− VB(r)) = u ·O (2)
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whereVA(r) andVB(r) are the potentials of the A and B sublattices shifted by the vector
u in opposite directions. On applying the potentialVst , the symmetry of the cubic IV–
VI semiconductors is reduced. If the vectoru is directed along the trigonal C3 axis, the
symmetry of the L points is reduced from D3d to C3v. Using an explicit form of the basis
functions of the conduction L−6 and valence L+6 bands from [24], by direct calculation of
the matrix elements of the potentialVst one gets

Ĥst =
(

0 −iσ ·E
iσ ·E 0

)
(3)

where the components of the vectorE areEi = 〈L−6 |uiOi |L+6 〉. The situation with the
polarization fieldu directed along the trigonal C3 axis is considered here, as it is this
direction in which the polarization effect is maximal in the structure under consideration.

Then, in the Hamiltonian describing the energy spectrum of the stressed semiconductor
heterojunction with antiferromagnetic ordering, the exchange interaction between the
magnetic impurity spinSn and the bare spin of the electronσ

Vex =
∑
n

A(|r −Rn|)Sn · σ (4)

has to be included (whereA(|r − Rn|) is an s-like coupling function centred at the
magnetic impurities). We make the plausible assumption that the magnetic impurities are
localized in the interstitials, their antiferromagnetic vectors being directed along thez-axis.
In this case the spin density of the magnetic impuritiesSn is an odd function—that is,
Sn(Rn) = −Sn(−Rn) (whereRn represents the location of the magnetic impurity). As a
result, the potentialVex gives rise to coupling states with opposite parity. So, the matrix
form of the exchange interaction constructed again with the wave functions from [24] is

Ĥex =
(

0 −iL
iL 0

)
(5)

in which the matrix elementL in the mean-field approximation is

L = i〈L−6β |Vex |L+6β〉 = i〈L−6α|Vex |L+6α〉
= iS0

∑
n

[〈L−6β |A(|r −Rn|)σz|L+6β〉 − 〈L−6β |A(|r +Rn|)σz|L+6β〉]

whereS0 is an absolute mean value of the magnetic impurity spin, and the indicesα and
β reflect the Kramers-conjugate states. Here the sum indexn runs just over the impurity
sitesRn on one side of the interface planez = 0 (that is, a symmetric arrangement of
the magnetic impurities is assumed). The matrix structure of the exchange Hamiltonian
Ĥex with the cross coupling matrix elements (connecting L− and L+) is a result of the
antiferromagnetic ordering of the interstitial magnetic impurity. If the magnetic impurities
were substitutional ones, the magnetic impurity spin density would be an even function,
and we would have a standard diagonal form forĤex with coupling between states of the
same parity (see for example [26]).

Expressed in terms of Mitchell’s energy spectrum parameters and the overlap integrals,
the matrix elementsE and L will be considered as parameters of our model approach.
Some numerical evaluations can be made. On the basis of the definition of the polarization
potentialVst , equation (2), we might estimate the valueE as 2Du (whereD is a deformation
potential, andu is a relative displacement). Using the appropriate values forD andu, we
obtain E ∼ 50–100 meV. Thus, the strain-induced polarization effect is comparable in
magnitude to the spontaneous polarization in weak ferroelectrics. For the parameterL, on
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the basis of the data for the exchange parameters of semimagnetic IV–VI semiconductors
given in [27], one obtainsL ∼ 20–40 meV.

So, the Hamiltonian describing the energy spectrum of the stressed IV–VI semiconductor
heterojunction with antiferromagnetic ordering along thez-axis is

Ĥ0 = Ĥ00+ Ĥst + Ĥex =
(

1 σ · p̂− i(σ ·E + L)
σ · p̂+ i(σ ·E + L) −1

)
. (6)

In the general case for the semiconductor structures considered, the matrix elementsE

andL are functions depending on the coordinatez. Note that the HamiltonianĤ0 looks
like the one for the energy spectrum of the exciton, which is ferromagnetic within the
framework of the mean-field approximation [22]. This is quite in order, taking into account
the above-mentioned analogy between these two problems.

After applying the transformation

Û =
(

iσz 0
0 1

)
the Hamiltonian (6) has the form

ˆ̃H0 = ÛĤ0Û−1 =
(

1 ip̂z + Ŵ + E
−ip̂z + Ŵ + E −1

)
(7)

whereŴ = σ · [p̂× n] + σzL, andn is a unit vector along thez-axis.
Since the interface states are of the Tamm type, and so are generated from the bulk

states of the initial semiconductors, first of all let us consider the energy spectrum of the
homogeneous semiconductor with polarization and antiferromagnetic ordering. We note that
Hamiltonian (7) commutes with the operator

ˆ̃W =
(
Ŵ 0
0 Ŵ

)
(8)

so theϕ andχ wave-function components of the Hamiltonianˆ̃H0 can be selected in the
form of eigenfunctions of theŴ -operator,

Ŵϕ± = W±ϕ±

whereW± = ±
√
L2+ p2

⊥, namely

ϕ± =
(

1
py − ipx
L+W±

)
ϕ±0 . (9)

Hereϕ±0 is a normalized factor andp⊥ is the length of the vectorp⊥ = (px, py, 0)—that
is, p2

⊥ = p2
x + p2

y . After simple calculations, we obtain that the energy spectrum consists
of four spin-split energy branches:

ε+1,2 =
√
(E +W±)2+12+ p2

z

ε−1,2 = −
√
(E +W±)2+12+ p2

z .

(10)

The branchesε+1,2 and ε−1,2 describe two spin-split conduction and valence bands, resp-
ectively. Using the wave functions in the form (9) for the average value of the spin after
normalization, one obtains

S±1,2 = ±
1√

L2+ p2
⊥
(py,−px, L). (11)
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So one can see that the polarization and antiferromagnetic ordering split the Kramers spin
degeneracy. Each of the branches of the conductionε+1,2 or the valenceε−1,2 bands is char-
acterized by opposite directions of the average spin valueS. As follows from (11),S is
directed along the vector

I = Ln+ [n× p⊥]. (12)

3. The interface energy spectrum

Now let us consider a non-symmetry-inverted contact, with its axis alongz, as an
inhomogeneous semiconductor structure, for which, besides the coordinate dependence
of the band gap, there is a coordinate dependence of the polarization field. At first,
the antiferromagnetic ordering parameter will be taken as the same for the two types of
semiconductor. Since the gap-centre positions of the constituents are different in the non-
symmetry-inverted contact, the Hamiltonian must include a coordinate-dependent work-
functionV (z). To simplify the analytical calculation, we determine the gap function1(z),
the polarization functionE(z) and the work-functionV (z) in terms of a single function
f (z):

1(z) = 10f (z) E(z) = E0f (z) V (z) = V0f (z) (13)

where clearly the signs of the asymptotesf (z→±∞) are opposite in the inverted contact,
and 10, E0, V0 are constants. Two different cases may be considered: (i)f (+∞) >
0, f (−∞) < 0; and (ii) f (+∞) < 0, f (−∞) > 0.

So the Hamiltonian of the system is

Ĥ =
(
1+ V ip̂z + Ŵ + E

HC −1+ V
)
. (14)

Noting again that the Hamiltonian̂H commutes with the operator̃̂W, equation (8), we select
the wave functions in the form of eigenfunctions of theŴ -operator. Then by means of the
unitary transformation

V̂ =
(

cos2 − sin2
sin2 cos2

)
(15)

where the angle2 is determined by the condition

10 cos 22− E0 sin 22+ V0 = 0 (16)

the HamiltonianĤ is transformed into

ˆ̃H = V̂−1ĤV̂ =
(−W± sin 22 −√E2+12− V 2+W± cos 22+ ip̂z

HC 2V +W± sin 22

)
. (17)

It immediately follows from (17) that the Schrödinger equation

(
ˆ̃H− ε)

(
ϕ̃±

χ̃±

)
= 0 (18)

where (
ϕ̃±

χ̃±

)
= V̂−1

(
ϕ±

χ±

)
has a solution withχ̃± = 0. This is a zero mode. It is worth noting that the same states
for different particular cases have been obtained in [1, 2, 6] by means of supersymmetry
quantum mechanics, and in the terminology of this field they were called Weyl states.
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For f (+∞) > 0 andf (−∞) < 0 there is the following solution of equation (18):

ε±i = ∓
E0V0−10

√
E2

0 +12
0− V 2

0

12
0+ E2

0

√
p2
⊥ + L2 (19)

with the functionϕ̃± satisfying the equation

(ipz +W±(z))ϕ̃± = 0 (20)

where

W±(z) =
√
E2

0 +12
0− V 2

0

f (z)±√p2
⊥ + L2

10V0+ E0

√
E2

0 +12
0− V 2

0

(12
0+ E2

0)

√
E2

0 +12
0− V 2

0

 .
This function plays the same role as the superpotential in the supersymmetry quantum
mechanics method [2, 6]. Being solutions of the first-order differential equation (20), the
functionsϕ̃± are localized at the interface boundary, but at the given asymptotes of thef (z)

function they are normalized just under the conditionsW±(+∞) > 0 andW±(−∞) < 0.
At |f (±∞)| = 1 this leads to√

p2
⊥ + L2 <

(12
0+ E2

0)

√
E2

0 +12
0− V 2

0

10V0+ E0

√
E2

0 +12
0− V 2

0

. (21)

So the statesε±i are of the interface type, but the interface-state spectrum cuts off at finite
transverse momentum.

At the opposite asymptotes of the functionf (z), the interface solutions are described by
the same expressions, (19)–(21), on making the replacements10→−10 andpz →−pz.

It is useful to consider a situation in which the parameter of the antiferromagnetic
ordering is not the same for the two types of semiconductor, but is determined by the same
function f (z) as is used above, so thatL(z) = L + L0f (z) (whereL,L0 are constants).
There is no way of finding an invariant of Hamiltonian (14) and of solving the problem
analytically in this case, but we can obtain a perturbative solution. Here we omit all
analytical calculations and just give the final result for the interface-state energy spectrum:

ε±i = ∓L sin 2ω± ∓ p2
⊥ sin2(ω+ + ω−)

L(sin 2ω+ + sin 2ω−)
(22)

where theω± are determined by the equation

tan 2ω± = 10

E0± L0
.

(To simplify the analytical calculations, we have put the work-functionV (z) equal to 0
here.) The wave functionsϕ± are spin-up ones for the energy statesε+i and spin-down ones
for the ε−i , satisfying the equation(
−ip̂z + f (z)A± ± L cos 2ω± ∓ p2

⊥ cos2(ω+ + ω−)
f (z)(A− − A+)− L(cos 2ω+ + cos 2ω−)

)
ϕ± = 0 (23)

whereA± =
√
12

0+ (E0± L0)2. At the given asymptotes of the functionf (z), one can

quite easily obtain conditions normalizing the wave functionsϕ±. So the spectrum of the
interface statesε±i is restricted again. It is obvious that atL0 = 0 the interface-state energy
spectrum obtained for the inverted contact with variable antiferromagnetic ordering tends
to the one for the contact with constant antiferromagnetic ordering.
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4. A spin analysis of the interface states

Each interface state of the inverted contact with constant antiferromagnetic ordering

9± =
(
ϕ̃±

0

)
is non-degenerate, and the average spin valueS±i is

S±i (z) = C exp

(
− 2

h̄v‖

∫ z

0
W±(z) dz

)
2

L±
√
p2
⊥ + L2

(py,−px, L) (24)

whereC is a constant determined by a normalizing condition. Here the first type off (z)

asymptote has been used. After integrating (24) (taken for the step functionf (z) and at
z = 0) over the electron momentump⊥ for the given symmetrical spectrum model, one
obtains

〈S±i (0)〉 = ±
√
E2

0 +12
0− V 2

0

2πh̄3v‖v2
⊥

(√
L2+ p2

⊥max − L
)

×
(

1− B
2

3
(2L2+ p2

⊥max + L
√
L2+ p2

⊥max)
)
(0, 0, L) (25)

wherep⊥max is set by (21) and

B =
10V0+ E0

√
E2

0 +12
0− V 2

0

(12
0+ E2

0)

√
E2

0 +12
0− V 2

0

.

So, we see that the average spins of the interface9+ and9− states are oppositely directed
along thez-axis.

As follows from (19), whenf (+∞) > 0, f (−∞) < 0 under the condition12
0 > V 2

0 ,
the energy levelε+i is situated higher thanε−i , while under the conditionV 2

0 > 12
0, they

exchange their relative positions. So the state with the average spin down is higher than
the state with the average spin up. For the asymptotesf (+∞) < 0, f (−∞) > 0, the
stateε−i with the spin down is higher than the stateε+i with the spin up for all cases
considered. Figures 1 and 2 show rough sketches of the interface energy spectrum of
the stressed inverted contact with constant antiferromagnetic ordering for both types of the
asymptotes of the functionf (z) (where for the relations between the parameters10, E0 and
L0 the above-mentioned estimates have been used). The solid lines correspond to the bulk
semiconductor bands of the constituents, while the dashed lines correspond to the interface
states. The arrows show the average spin directions relative to thez-axis. From the figures
we can see that for the values of the model parameters used there is an actual region of
the transverse momentum where the condition (21) is fulfilled and so the interface states
exist. Note that, in line with the assumed heterojunction geometry, the energy branches of
the constituents are the same, but their spin directions are opposite.

Comparing expression (10) for the energy levels of the homogeneous semiconductors
and (19) for the interface heterojunction states, we note that the interface states are
situated nearer to the middle of the gap of the constituents. Thus, if in the semiconductor
heterojunctions the Fermi level—for example, as a result of doping—falls in one of the two-
dimensional interface bands, then it leads to magnetic ordering in the interface plane. Being
proportional to the value〈S+i 〉 or 〈S−i 〉, equation (25)—according to which of the interface
states,ε+i or ε−i respectively, is occupied—the interface magnetization will be directed
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Figure 1. A rough sketch of the interface energy spectrum in the stressed inverted contact with
constant antiferromagnetic ordering for the asymptotesf (+∞) > 0, f (−∞) < 0 (12

0 > V 2
0 ).

The solid lines show the energy branches of the constituents and the dashed lines show the
interface states. The arrows show the average spin direction.

Figure 2. As figure 1, but for the asymptotesf (+∞) < 0, f (−∞) > 0.

along thez-axis or in the opposite direction, the magnetization value being exponentially
attenuated moving away from the interface plane. Clearly the interface magnetization is
maximal if one of the interface bands is occupied, but the other is empty, and it is equal to
zero if both interface bands are completely occupied as the magnetization of one of them
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is directed along thez-axis and the magnetization of the other is directed oppositely. In the
intermediate case, where one of the interface bands is completely occupied and the other
is not, there is some uncompensated magnetization determined by the difference between
p⊥max and the Fermi momentumpF governed by relation (21) and by the Fermi energyεF ,
respectively.

In the framework of our model we can obtain the value of the interface magnetization
(calculated for simplicity atz = 0) relative to the magnetization determined by the band
states. After integratingS±1,2, equation (11), over the occupied states, we have

M = 〈S
±
i (0)〉
〈S±1,2〉

=
π

√
E2

0 +12
0

pFv‖

(1− δ)(δ + 2)

3
(26)

whereδ = ε±i /ε±i (p⊥max) = E0L/(1
2
0 + E2

0). Here we have putV0 = 0 and determined
the Fermi energy from the value ofp⊥max , equation (21), i.e. the ideal situation in which
the interface magnetization is a maximum is considered. It is obvious that the relationship
of the interface magnetization to the band one is governed by the ratio of the energies of
the occupied interface states and band states (i.e.εF ).

From (26) we note that the interface magnetization is equal to zero atδ = 1, i.e., as
follows from (21), atp⊥max = 0. This is a quite trivial result, because there are no interface
states in this case. In the interval 06 δ 6 1 the value of the relative interface magnetization
M is a monotonically decreasing function of the parameterδ; this is obviously caused by
the decrease of the interface-state fraction withδ increasing from 0 to 1. The value ofM
is a maximum atδ = 0, i.e. atE0 or L = 0. However, it is quite apparent from (25)
and (11) that atL = 0 there is neither any interface nor any band magnetization, soM

takes an indeterminate value. As for the case whereE0 = 0, from (10) we find the energy
branchesε±1 to be superimposed onε±2 (for E0 = 0), so the energy statesε± become
doubly degenerate with the net spin equal to zero. So relation (26) holds just over the
interval 0< δ 6 1, where the pointδ = 0 is ignored.

Now, using representative estimates for the model parameters, we find the value of
the relative interface magnetizationM, equation (26), to be of the order of 1—that is, the
interface magnetization may be a real effect for the structures under consideration. For the
inverted contact with variable antiferromagnetic ordering, we guess that the perturbation
solutions in the limit of smallp⊥ will show the same peculiarities as for the contact with
constant antiferromagnetic ordering. Again, each interface state is non-degenerate. The spin
of one of them is up relative to thez-axis but the spin of the other is down.

5. Summary

We have discussed in some detail the spectra for the midgap states bound to interfaces
in stressed heterostructures made from materials with inverted bands and showing
antiferromagnetic ordering. Comparing these interface states with those of stressed semi-
conductor heterojunctions without antiferromagnetic ordering [6] (which correspond toL =
0 in our model) or with interface states arising in a simple inverted contact [1, 2] (E0, L = 0),
one can see that in the case of the stressed inverted contact with antiferromagnetic ordering
there is a gap between the electron- and hole-like states (determined by the parameter of
the antiferromagnetic ordering,L). Moreover, the spectrum of the interface states is not
linear inp⊥.

The spin analysis of the interface states showed them to be spin split. So, if in the
semiconductor heterostructures the Fermi level—for example, as a result of doping—falls
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into one of the interface bands, then this leads to magnetic ordering in the interface plane.
In view of this, the interface magnetization effect has been discussed. This effect can occur
even in normal semiconductor heterojunctions if the gaps of the initial semiconductors have
the same signs. However, as emphasized in the introduction, for a stressed semiconductor
heterojunction with a normal band arrangement, the interface states appear inside either
the bulk valence or conduction bands of the original semiconductors, and they exist for
at most a restricted range of values of the transverse momentum. So, in the case of the
normal stressed semiconductor heterojunction with antiferromagnetic ordering, the effect of
interface magnetization might be found under more rigorous conditions.

In this work, an idealized system in the framework of certain approximations has been
studied. Correlation problems treated in the self-consistent approach have been excluded
from our consideration. However, the specific physical properties of the IV–VI narrow-gap
semimagnetic semiconductors (used as model materials), such as the small values of the
effective masses, and the very high dielectric constants (resulting in strong screening of
the electromagnetic fields), lead us to believe the electron correlation effect to be of no
importance for the problems discussed.

Another question arises concerning the neglect of the terms∼k2 in the Hamiltonian (1).
They are diagonal terms of the Dimmock model [23] resulting from far-band corrections,
and are written ask2/2m (wherem is a far-band mass). A detailed investigation of interface
states in band-inverted semiconductor heterojunctions [3] showed these far-band corrections
to provide a modest curvature of the energy spectrum and to give an additional spectral
cut-off, but the quantitative changes are not very significant. In fact, these higher-order
terms become important for largep⊥ such thatp⊥ > 10, the interface states existing just
for

p2
⊥ < 412

0

(
mv2

10

)
. (27)

So, in the second approximation of perturbation theory, the condition restricting the range
of transverse momentum for the interface states in stressed semiconductor heterojunctions
with antiferromagnetic ordering will not be as simple as (21). However, taking into account
the real relations between the parameters10, E0 andL used for our model materials and
the fact that for IV–VI narrow-gap semiconductors the value ofmv2/10 is of the order of
5, after a trivial estimation we find the relation (21) to be more rigorous than (27). Thus we
have good reasons to assume that upon including the far-band corrections our main results
would not change.

In concluding, we would like to note that there have been experimental studies [18, 19]
showing some new magnetic effects in EuTe/PbTe superlattices which can be connected
with interface magnetization, but a direct observation of the effect under consideration
would be more likely to be achieved by means of magneto-optical experiments. From the
theoretical point of view, at this moment, as a first step, the simple model developed fits the
problem in question quite adequately, providing an opportunity to achieve an understanding
of the physics of the phenomenon. Clearly, in order to make further progress, the interface
magnetization effect discussed in this work needs to be considered by means of a self-
consistent approach, treating some of the correlation effects.
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